Nearly Tetrahedral 1:2 Complexes of Copper(I), Copper(II), Nickel(II), Cobalt(II), and Zinc(II) with 2,2'-Bis(2-imidazoly) biphenyl

Spencer Knapp,* Terence P. Keenan, Xiaohua Zhang, Ronald Fikar, Joseph A. Potenza,* and Harvey J. Schugar*

Department of Chemistry, Rutgers The State University of New Jersey New Brunswick, New Jersey 08903

Received October 28, 1986
We describe here several pseudotetrahedral complexes whose tetrakis(imidazolyl) ligand sets exhibit an unparalleled degree of geometric control. These chromophores are relevant models for native and derivatized superoxide dismutases with $\mathrm{Cu}(\mathrm{I}, \mathrm{II})$, $\mathrm{Ni}(\mathrm{II}), \mathrm{Co}(\mathrm{II})$, or $\mathrm{Zn}(\mathrm{II})$ ions in pseudotetrahedral metal binding sites. ${ }^{1-4}$ Construction of site analogues requires the use of ligand constraints to overcome the ligand field (LF) driven distortion of tetrahedral $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ imidazole complexes toward planarity ${ }^{5.6}$ and the preference of $\mathrm{Cu}(\mathrm{I})$ imidazole complexes for 2- or 3-coordination. ${ }^{7,8}$ Nonplanar $\mathrm{Cu}^{11} \mathrm{~N}_{4}$ and $\mathrm{Ni}^{11} \mathrm{~N}_{4}$ complexes of nonbiological N -donors have been reported with $\mathrm{MN}_{2} / \mathrm{MN}^{\prime}{ }_{2}$ dihedral angles (DA) up to 71.9° (ideal planar and tetrahedral limits are 0° and 90°, respectively). ${ }^{9-14}$ Bidentate aromatic N -donor ligands afford $\mathrm{Cu}^{1} \mathrm{~N}_{4}$ complexes with larger DA's $\left(70-80^{\circ}\right),{ }^{15-17}$ while the $\mathrm{Cu}(\text { pyridine })_{4}{ }^{+}$cation shows $\overline{4}$ site symmetry ($\mathrm{DA}=90^{\circ}$) and is nearly tetrahedral. ${ }^{18}$

Although electron transfer between dissimilar $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ sites may be reversible, ${ }^{19,20}$ the fastest rates should obtain when coordination changes are small, as with $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ plastocyanin. ${ }^{21}$ The search ${ }^{22-24}$ for a nearly tetrahedral $\mathrm{Cu}^{1} / \mathrm{Cu}^{11} \mathrm{~N}_{4}$
(1) Calabrese, L.; Cocco, D.; Morpurgo, L.; Mondovi, B.; Rotilio, G. FEBS Lett.1975, 59, 29.
(2) Calabrese, L.; Cocco, D.; Morpurgo, L.; Mondovi, B.; Rotilio, G. Eur. J. Biochem. 1976, 64, 465.
(3) Pantoliano, M. W.; Valentine, J. S.; Nafie, L. A. J. Am. Chem. Soc. 1982, 104, 6310.
(4) Ming, L.-J.; Valentine, J. S. Abstracts of Papers, 192nd National Meeting of the American Chemical Society, Anaheim, CA; American Chemical Society: Washington, DC, 1986; INOR 193.
(5) Bernarducci, E.; Bharadwaj, P. K.; Krogh-Jespersen, K.; Potenza, J. A.; Schugar, H. J. J. Am. Chem. Soc. 1983, 105, 3860.
(6) Lum, V.; Gray, H. B. Isr. J. Chem. 1981, 21, 23.
(7) (a) Sorrell, T. N.; Borovik, A. S. J. Am. Chem. Soc. 1986, 108, 2479.
(b) Sorrell, T. N.; Jameson, D. L. J. Am. Chem. Soc. 1983, 105, 6013.
(8) Schilstra, M. J.; Birker, P. J. M. W. L.; Verschoor, G. C.; Reedijk, J. Inorg. Chem. 1982, 21, 2637.
(9) Johnson, J. E.; Beineke, T. A.; Jacobson, R. A. J. Chem. Soc. A 1971, 1371.
(10) Baxter, C. E.; Rodig, O. R.; Schlatzer, R. K.; Sinn, E. Inorg. Chem. 1979, 18, 1918.
(11) Gouge, E. M.; Geldard, J. F.; Sinn, E. Inorg. Chem. 1980, 19, 3356.
(12) Patmore, D. J.; Rendle, D. F.; Storr, A.; Trotter, J. J. Chem. Soc., Dalton Trans. 1975, 718.
(15) Davis, W. M.; Zask, A.; Nakanishi, K.; Lippard, S. J. Inorg. Chem. 1985, 24, 3737.
(14) Davis, W. M.; Roberts, M. M.; Zask, A.; Nakanishi, K.; Nozoe, T.; Lippard, S. J. J. Am. Chem. Soc. 1985, 107, 3864.
(15) Goodwin, K. V.; McMillin, D. R.; Robinson, W. R. Inorg. Chem. 1986, 25, 2033.
(16) Burke, P. J.; McMillin, D. R.; Robinson, W. R. Inorg. Chem. 1980, 19, 1211.
(17) Dobson, J. F.; Green, B. E.; Healy, P. C.; Kennard, C. H. L.; Pakawatchai, C.; White, A. H. Aust. J. Chem. 1984, 37, 649 and references cited therein.
(18) Nilsson, K.; Oskarsson, A. Acta Chem. Scand., Ser. A 1982, 36, 605.
(19) Pulliam, E. J.; McMillin, D. R. Inorg. Chem. 1984, 23, 1172.
(20) Hartman, J.-A., R.; Cooper, S. R. J. Am. Chem. Soc. 1986, 108, 1202.
(21) Garret, T. P. J.; Clingeleffer, D. J.; Guss, J. M.; Rogers, S. J.; Freeman, H. C. J. Biol. Chem. 1984, 259, 2822.
(22) Burke, P. J.; Henrick, K.; McMillin, D. R. Inorg. Chem. 1982, 2I, 1881.

Figure 1. View of one of the two similar cations in $\mathrm{Cu}(1)_{2} \cdot 2 \mathrm{ClO}_{4}$. H atoms have been omitted for clarity. Selected interatomic distances and angles: $\mathrm{Cu}-\mathrm{N}(1), 1.953$ (7) [1.980 (7)]; $\mathrm{Cu}-\mathrm{N}(3), 1.961$ (7) [1.949 (8)] $\AA ; \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(1^{\prime}\right), 140.3(4)^{\circ}\left[141.9(4)^{\circ}\right] ; \mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right), 142.5(4)^{\circ}$ $\left[141.6(5)^{\circ}\right] ; \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3), 93.0(3)^{\circ}$ [93.6(3)$\left.{ }^{\circ}\right] ; \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right)$, $99.5(3)^{\circ}\left[98.7(3)^{\circ}\right] ; \mathbf{N}(1)-\mathrm{Cu}-\mathrm{N}\left(1^{\prime}\right) / \mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right), 86.4(2)^{\circ}$ [89.1 $\left.(2)^{\circ}\right] ; \mathrm{N}\left(1^{\prime}\right)-\mathrm{Cu}-\mathrm{N}(3) / \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right), 51.3(2)^{\circ}\left[51.1(2)^{\circ}\right] ; \mathrm{N}(1)-$ $\mathrm{Cu}-\mathrm{N}(3) / \mathrm{N}\left(1^{\prime}\right)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right), 54.2(2)^{\circ}\left[53.4\right.$ (2) $\left.{ }^{\circ}\right]$. Values for the second unique cation are in square brackets.

Figure 2. View of one of the two cations in $\mathrm{Cu}(1)_{2} \cdot \mathrm{ClO}_{4}$. For clarity, H atoms have been omitted. Selected interatomic distances and angles: $\mathrm{Cu}-\mathrm{N}(1), 2.022$ (8) $[2.031$ (7)]; $\mathrm{Cu}-\mathrm{N}(3), 2.037$ (8) [2.052 (7)] \AA; $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(1^{\prime}\right), 119.5(3)^{\circ}\left[120.6(3)^{\circ}\right] ; \mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right), 121.6(3)^{\circ}$; $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3), 105.9(3)^{\circ}\left[104.4(3)^{\circ}\right] ; \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right), 102.5(3)^{\circ}$ $\left[107.5(3)^{\circ}\right] ; \mathrm{N}\left(1^{\prime}\right)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right),\left[100.4(3)^{\circ}\right] ; \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(1^{\prime}\right) / \mathrm{N}(3)-$ $\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right), 87.9(1)^{\circ}\left[89.4(1)^{\circ}\right] ; \mathrm{N}\left(1^{\prime}\right)-\mathrm{Cu}-\mathrm{N}(3) / \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right), 78.9$ (1) ${ }^{\circ}$ [77.9 (1) ${ }^{\circ}$; $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3) / \mathrm{N}\left(1^{\prime}\right)-\mathrm{Cu}-\mathrm{N}\left(3^{\prime}\right), 76.8(1)^{\circ}[77.4$ $\left.(1)^{\circ}\right]$. Values for the second cation are in square brackets.
redox pair containing the same ligands has now been resolved. This pair as well as the analogous $\mathrm{Co}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$, and the novel $\mathrm{Ni}(\mathrm{II}) \mathrm{N}_{4}$ complexes are described here.
The bidentate bis(imidazole) donor ligand 1 was prepared in three steps from dimethyl diphenate. ${ }^{25}$ Reaction with excess ethylenediamine at reflux ${ }^{26}$ gave the crystalline bis[N -(2aminoethyl)amide], which was cyclized and dehydrated by using

[^0]

1
p-toluenesulfonic acid at $200^{\circ} \mathrm{C}$. The resulting bis(imidazoline) was oxidized with BaMnO_{4} according to the procedure we developed for 2 -substituted imidazoles, ${ }^{27}$ and 1 was isolated as colorless crystals, mp $273-274{ }^{\circ} \mathrm{C} .{ }^{28}$ Complexes of 1 were prepared by treatment with 0.5 equiv of the $\mathrm{M}(\mathrm{II})$ perchlorate in ethanol. The green $\mathrm{Cu}(\mathrm{II})$ complex ($1.7 \mu_{\mathrm{B}}$) crystallized as the diperchlorate from acetone-ether. The dark-blue Ni(II) (3.7 μ_{B}), purple $\mathrm{Co}(\mathrm{II})$, ($4.7 \mu_{\mathrm{B}}$), and colorless Zn (II) complexes crystallized from ethanol-ether as isostructural diperchlorates having three lattice ethanol molecules per metal. The $\mathrm{Cu}(\mathrm{I})$ complex was obtained as the pale-yellow perchlorate by diffusing ether into a deoxygenated acetonitrile solution containing 1 equiv of $\mathbf{1}$ and 0.5 equiv of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \cdot \mathrm{ClO}_{4}$.

From X-ray analysis, the metal ions were found to lie on twofold axes which either relate two molecules of $\mathbf{1}$ in the $2: 1$ complexes $(\mathrm{Ni}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Cu}(\mathrm{I})$), or which bisect the biphenyl $1,1^{\prime}$-bond and relate halves of $1[\mathrm{Cu}(\mathrm{I}), \mathrm{Cu}(\mathrm{II})$, Figures 1 and 2]..29 Comparison of the figures shows the strong similarity of the $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ structures. Geometrical constraints within the nine-membered chelate rings cause the intraligand $\mathrm{N}(1)-\mathrm{M}-$ $\mathrm{N}\left(1^{\prime}\right)$ angles to exceed 109°, flattening the otherwise tetrahedral MN_{4} units. Additional LF effects result in larger angles for the $\mathrm{Cu}(\mathrm{II})$ [140.3 (4) $\left.{ }^{\circ}, 142.5(4)^{\circ}\right]$ and $\mathrm{Ni}(\mathrm{II})$ [130.2 (2) $\left.{ }^{\circ}\right]$ complexes compared with those for $\mathrm{Co}(\mathrm{II})$ [123.2 (2) ${ }^{\circ}$] and $\mathrm{Cu}(\mathrm{I})$ [119.5 $\left.(3)^{\circ}, 121.6(3)^{\circ}\right]$. The DA's between the intraligand $\mathrm{N}_{2} \mathrm{M}$ units (e.g., $\mathrm{N}(1)-\mathrm{M}-\mathrm{N}\left(1^{\prime}\right) / \mathrm{N}(3)-\mathrm{M}-\mathrm{N}\left(3^{\prime}\right)$, Figure 1) are 86.4 (2) ${ }^{\circ}$, $87.2(2)^{\circ} ; 87.9(1)^{\circ}, 89.4(1)^{\circ} ; 89.3(2)^{\circ}$; and $87.6(1)^{\circ}$ respectively for the $\mathrm{Cu}(\mathrm{II}), \mathrm{Cu}(\mathrm{I}), \mathrm{Co}(\mathrm{II})$, and $\mathrm{Ni}(\mathrm{II})$ complexes. Increasing $D_{2 d}$ flattening is reflected by the successive decrease in the interligand DA's observed for $\mathrm{Cu}(\mathrm{I})$ [76.8(1)-78.9(1) $\left.{ }^{\circ}\right]$, Co (II) [74.0 (2) $\left.{ }^{\circ}, 74.7(2)^{\circ}\right], \mathrm{Ni}(\mathrm{II})$ [65.4 (2) $\left.{ }^{\circ}, 67.7(2)^{\circ}\right]$, and Cu (II) [51.1 (2)-54.2 (2) ${ }^{\circ}$]. The $\mathrm{Cu}(\mathrm{II})-\mathrm{N}$ distances (Figure 1) are ca. $0.05 \AA$ shorter than those generally observed for planar or tetragonal tetrakis(imidazole)copper(II) complexes ${ }^{5}$ but are typical for tetrahedrally distorted $\mathrm{Cu}($ II $)$ complexes having four $\mathrm{sp}^{2} \mathrm{~N}$-donors. ${ }^{10-12}$ The $\mathrm{Cu}(\mathrm{I})-\mathrm{N}$ distances (Figure 2) are normal. ${ }^{15-18}$ The $\mathrm{Co}(\mathrm{II})-\mathrm{N}$ distances [1.987 (4), 2.001 (6) \AA] are the same as those [1.988 (3), 2.002 (3) \AA] for the essentially tetrahedral (1,2-dimethylimidazole) ${ }_{4} \mathrm{Co} \cdot 2 \mathrm{ClO}_{4}$ complex. ${ }^{30}$ The

[^1]$\mathrm{Ni}(\mathrm{II})-\mathrm{N}$ distances $[1.960$ (5), 1.966 (6) \AA] are similar to those of pseudotetrahedral Ni(II) tropocoronand complexes with DA's in the range 70.1-85.2 $2^{\circ} .^{14}$
Electronic spectra of the $\mathrm{Cu}(\mathrm{II})$ complex (mulls and solution) include a LF absorption at $660 \mathrm{~nm}(\epsilon \sim 400)$ and the predicted ${ }^{31}$ π (imidazole) $\rightarrow \mathrm{Cu}($ II $)$ LMCT absorption at $450 \mathrm{~nm}(\epsilon \sim 600)$. The $\mathrm{Cu}(\mathrm{II})$-doped $\mathrm{Zn}(\mathrm{II})$ complex exhibits axial EPR spectra (g. $\left.=2.32, g_{\perp}=2.06, A_{\|}{ }^{\mathrm{Cu}}=118 \times 10^{-4} \mathrm{~cm}^{-1}\right)$ considerably different from those ($g_{\|}=2.26, g_{\perp}=2.08, A_{1}{ }^{\mathrm{Cu}}=178 \times 10^{-4} \mathrm{~cm}^{-1}$) of a planar tetrakis(phenylimidazole)copper(II) reference complex ${ }^{32}$ but similar to those ${ }^{3}$ for superoxide dismutase with $\mathrm{Cu}(\mathrm{II})$ doped into the $\mathrm{Zn}(\mathrm{II})$ site ($g_{z}=2.316, g_{y}=2.118, g_{x} \approx 2.01, A_{z}{ }^{\mathrm{Cu}}=$ $116 \times 10^{-4} \mathrm{~cm}^{-1}$). The $\mathrm{Ni}(\mathrm{II})$ complex exhibits LF absorptions at $770(\epsilon \sim 30), 640(\epsilon \sim 85)$, and $470 \mathrm{~nm}(\epsilon \sim 140)$; the π (imidazole) $\rightarrow \mathrm{Ni}($ II $)$ LMCT absorption appears at $350 \mathrm{~nm}(\epsilon \sim 800)$. π (Imidazole) $\rightarrow \mathrm{Ni}($ II $)$ LMCT at 335 and 355 nm has been reported for $\mathrm{Ni}(\mathrm{II})$-substituted stellacyanin and azurin, respectively. ${ }^{6}$ The Co(II) complex exhibits LF absorptions at 590 (ϵ ~ 600) and $520 \mathrm{~nm}(\epsilon \sim 470)$; the π (imidazole) $\rightarrow \mathrm{Co}(\mathrm{II})$ LMCT absorption appears at $310 \mathrm{~nm}(\epsilon \sim 900)$. The ligand 1 does not exhibit electronic absorptions at wavelengths longer than 300 nm .

Acknowledgment. This research was supported by the NSF (Grant CHE8417548), the David and Joanna Busch Foundation, and the NIH (Instrumentation Grant 1510 RRO 1486 OlA).

Supplementary Material Available: Full details for the synthesis of $\mathbf{1}$ and positional and thermal parameters for $\mathrm{Cu}(\mathbf{1})_{2} \cdot 2 \mathrm{ClO}_{4}$, $\mathrm{Cu}(\mathbf{1})_{2} \cdot \mathrm{ClO}_{4}, \mathrm{Ni}(\mathbf{1})_{2} \cdot 2 \mathrm{ClO}_{4} \cdot 3 \mathrm{EtOH}$, and $\mathrm{Co}(\mathbf{1}) \cdot 2 \mathrm{ClO}_{4} \cdot 3 \mathrm{EtOH}(26$ pages). Ordering information is given on any current masthead page.
(32) Prochaska, H. J.; Schwindinger, W. F.; Schwartz, M.; Burk, M. J.; Bernarducci, E.; Lalancette, R. A.; Potenza, J. A.; Schugar, H. J. J. Am. Chem. Soc. 1981, 103, 3446.

Reactivity of Pentaammineosmium(II) with Benzene

W. D. Harman and H. Taube*

Department of Chemistry, Stanford University Stanford, California 94305
 Received October 30, 1986

Our continued interest in the reactivity of pentaammineosmium(II) with unsaturated ligands ${ }^{1,2}$ has prompted us to investigate its interaction with unsubstituted aromatic hydrocarbons. When $\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}{ }^{3}$ is reduced by magnesium in the presence of excess benzene, a deep orange solution results. ${ }^{4 a}$ The material isolated from this reaction was characterized as [Os-$\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}\right.$-benzene $\left.)\right](\mathrm{TFMS})_{2}(1) .{ }^{5 \mathrm{a}}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 at room temperature shows resonances at 4.75 and 3.45 ppm ,

[^2]
[^0]: (23) Bernarducci, E. E.; Bharadwaj, P. K.; Lalancette, R. A.; KroghJespersen, K.; Potenza, J. A.; Schugar, H. J. Inorg. Chem. 1983, 22, 3911.
 (24) Karlin, K. D.; Hayes, J. C.; Hutchinson, J. P.; Hyde, J. R.; Zubieta, J. Inorg. Chim. Acta 1982, 64, L219.
 (25) Underwood, H. W., Jr.; Kochmann, E. L. J. Am. Chem. Soc. 1924, 46, 2069.
 (26) Hill, A. J.; Aspinall, S. R. J. Am. Chem. Soc. 1939, 61, 822.

[^1]: (27) Hughey, J. L., IV; Knapp, S.; Schugar, H. J. Synthesis 1980, 489.
 (28) See the supplementary material for more information.
 (29) Crystallography: $\mathrm{Cu}(1)_{2} \cdot \mathrm{ClO}_{4}, \mathrm{CuClO}_{4} \mathrm{~N}_{8} \mathrm{C}_{36} \mathrm{H}_{28}$, monoclinic, $\mathrm{C} 2 / \mathrm{c}$, $a=20.922$ (7) $\AA, b=20.603$ (3) $\AA, c=16.127$ (3) $\AA, \beta=90.36$ (2) ${ }^{\circ}, Z$ $=8 ; d_{\text {obsd }}=1.40(1), d_{\text {calcd }}=1.406 \mathrm{~g} / \mathrm{cm}^{3}$. The structure was solved (2252 reflections ($I>1 \sigma(I)$, Mo K α radiation, $0.71073 \AA$, empirical absorption corrections) using the Enraf-Nonius SDP and refined to give $R_{F(\omega F)}=0.070$ (0.070) and a goodness of fit of $1.93 . \mathrm{Cu}(1)_{2} \cdot 2 \mathrm{ClO}_{4}, \mathrm{CuCl}_{2} \mathrm{O}_{8} \mathrm{~N}_{8} \mathrm{C}_{36} \mathrm{H}_{28}$, orthorhombic, $P b c n, a=17.581$ (3) $\AA, b=21.706$ (2) $\AA, c=19.154$ (2) \AA, $Z=8 ; d_{\text {obsd }}=1.51(1), d_{\text {calcd }}=1.518 \mathrm{~g} / \mathrm{cm}^{3}, 2783$ reflections $(I>1 \sigma(I))$, $R_{F(\omega F)}=0.098(0.095)$, and $\mathrm{GOF}=2.24 . \quad \mathrm{Co}(1)_{2} \cdot 2 \mathrm{ClO}_{4} \cdot 3 \mathrm{EtOH}, \mathrm{CoCl} 2_{2}$ $\mathrm{O}_{11} \mathrm{~N}_{8} \mathrm{C}_{42} \mathrm{H}_{46}$, monoclinic, $C 2 / c, a=27.239$ (4) $\AA, b=13.041$ (2) $\AA, c=$ 16.205 (2) $\AA, \beta=125.39(1)^{\circ}, Z=4 ; d_{\text {obsd }}=1.41(1), d_{\text {calcd }}=1.371 \mathrm{~g} / \mathrm{cm}^{3}$, 2019 reflections $(I>1 \sigma(I)), R_{F(\omega F)}=0.070(0.085)$, and $G O F=2.72$. $\mathrm{Ni}(1) \cdot 2 \mathrm{ClO}_{4} \cdot 3 \mathrm{EtOH}, \mathrm{NiCl}_{2} \mathrm{O}_{11} \mathrm{~N}_{8} \mathrm{C}_{42} \mathrm{H}_{46}$, monoclinic, $\mathrm{C} 2 / c, a=26.842$ (5) $\AA, b=13.022$ (2) $\AA, c=16.406$ (2) $\AA, \beta=126.21(1)^{\circ}, Z=4 ; d_{\text {obsd }}=1.39$ (1), $d_{\text {calcd }}=1.390 \mathrm{~g} / \mathrm{cm}^{3}, 2049$ reflections $(I>3 \sigma(I)) R_{F(\omega F)}=0.080(0.085)$, and $\mathrm{GOF}=2.25$. The Co, Ni, and a nominally $3 \% \mathrm{Ni}(\mathrm{II})$-doped $\mathrm{Zn}(1)_{2}$ complex (lattice constants $a=27.26$ (1) $\AA, b=13.021$ (3) $\AA, c=16.18$ (1) $\left.\AA, \beta=125.44(5)^{\circ}\right)$ are isostructural. The perchlorate anions in all the complexes showed high thermal parameters and/or disorder, resulting in higher than normal R factors. Complete structural details will be presented elsewhere.
 (30) Bernarducci, E.; Bharadwaj, P. K.; Potenza, J. A.; Schugar, H. J. Acta Crystallogr. Sect. C, accepted for publication.
 (31) Bernarducci, E.; Schwindinger, W. F.; Hughey, J. L., IV; KroghJespersen, K.; Schugar, H. J. J. Am. Chem. Soc. 1981, 103 , 1686.

[^2]: (1) Harman, W. D.; Fairlie, D. P.; Taube, H. J. Am. Chem. Soc. 1986, 108, 8223-8227
 (2) Taube, H. Pure Appl. Chem. 1979, 51, 901-912.
 (3) Lay, P.; Magnuson, R.; Sen, J.; Taube, H. J. Am. Chem. Soc. 1982, 104, 7658.
 (4) (a) Preparation of 1: 200 mg of $\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{TFMS})_{3}$ and 1.0 mL of benzene are dissolved in a cosolvent mixture of 1.5 mL of dimethylacetamide (DMA) and 20 mL of freshly distilled dimethoxyethane. Magnesium, 1.0 g , cleaned with iodine and washed with DMA, is added and the stirred solution becomes orange. After 50 min , the reduced solution is filtered and treated with 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, precipitating the final product. (b) Preparation of 2: $1,100 \mathrm{mg}$, is suspended in ethyl acetate (EtOAc) for 24 h . The solution is filtered and the precipitate collected and washed with $\mathrm{EtOAc}_{\mathrm{O}}$ and $\mathrm{Et}_{2} \mathrm{O} .2$ is recrystallized by vapor diffusion of ether into acetone.
 (5) (a) 1: Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{21} \mathrm{Os}_{1} \mathrm{~S}_{2} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~N}_{5}: \mathrm{C}, 14.75 ; \mathrm{H}, 3.25 ; \mathrm{N}$, 10.75. Found: C, 14.75; H, 3.48; N, 10.57. IR (KBr) 3040, 2961, 1529, 1450, $988,927 \mathrm{~cm}^{-1}$ (plus $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$and ammine absorptions); ${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 6.45(5.5 \mathrm{H}$, br), $4.75(3 \mathrm{H}, \mathrm{br}), 3.45(12 \mathrm{H}$, br), -87 ${ }^{\circ} \mathrm{C}$: $7.25(2 \mathrm{H}, \mathrm{br}), 6.55(2 \mathrm{H}, \mathrm{br}), 5.22(2 \mathrm{H}$, br). (b) 2: Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{36} \mathrm{Os}_{2} \mathrm{~S}_{4} \mathrm{~F}_{12} \mathrm{O}_{12} \mathrm{~N}_{10}{ }^{3} /{ }_{4} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}: \mathrm{C}, 11.76 ; \mathrm{H}, 3.20 ; \mathrm{N}, 10.94$. Found: C , $11.60 ; \mathrm{H}, 3.22 ; \mathrm{N}, 11.04$. IR (KBr) 3005, 2958 (m), 1464, 1156, 1047, 927 cm^{-1} (plus $\mathrm{SO}_{3} \mathrm{CF}_{3}{ }^{-}$and ammine absorptions); ${ }^{1} \mathrm{H}$ NMR (acetone d_{6}) $\delta 6.53$ $(1.9 \mathrm{H}, \mathrm{m}), 4.63(2.0, \mathrm{~d}), 4.33(1.9, \mathrm{~m}), 4.90(5.8, \mathrm{br}), 3.65(23, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR (acetone- d_{6}, proton decoupled) 127.6 (s), 53.1 (s), 49.6 (s), 123 (q) ppm $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)$.

